Big brown bats are challenged by acoustically-guided flights through a circular tunnel of hoops
نویسندگان
چکیده
منابع مشابه
Social calls of flying big brown bats (Eptesicus fuscus)
Vocalizations serving a variety of social functions have been reported in many bat species (Order Chiroptera). While echolocation by big brown bats (Eptesicus fuscus) has been the subject of extensive study, calls used by this species for communication have received comparatively little research attention. Here, we report on a rich repertoire of vocalizations produced by big brown bats in a lar...
متن کاملDistinct Lineage of Vesiculovirus from Big Brown Bats, United States
We identified a novel rhabdovirus, American bat vesiculovirus, from postmortem tissue samples from 120 rabies-negative big brown bats with a history of human contact. Five percent of the tested bats were infected with this virus. The extent of zoonotic exposure and possible health effects in humans from this virus are unknown.
متن کاملBats Are Acoustically Attracted to Mutualistic Carnivorous Plants
Mutualisms between plants and animals shape the world's ecosystems. In such interactions, achieving contact with the partner species is imperative. Plants regularly advertise themselves with signals that specifically appeal to the partner's perceptual preferences. For example, many plants have acquired traits such as brightly colored, fragrant flowers that attract pollinators with visual, olfac...
متن کاملSocial Vocalizations of Big Brown Bats Vary with Behavioral Context
Bats are among the most gregarious and vocal mammals, with some species demonstrating a diverse repertoire of syllables under a variety of behavioral contexts. Despite extensive characterization of big brown bat (Eptesicus fuscus) biosonar signals, there have been no detailed studies of adult social vocalizations. We recorded and analyzed social vocalizations and associated behaviors of captive...
متن کاملJamming avoidance response of big brown bats in target detection.
When searching for prey, big brown bats (Eptesicus fuscus) enhance the range of their sonar by concentrating more energy in the nearly constant-frequency (CF) tail portion of their frequency-modulated (FM) sweeps. We hypothesize that this portion of their signals may be vulnerable to interference from conspecifics using the same frequencies in their own emissions. To determine how bats modify t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2020
ISSN: 2045-2322
DOI: 10.1038/s41598-020-57632-4